COMPARATIVE ANALYSIS AND DESIGN OF PUBLIC BUILDING USING MANUAL METHOD AND STAAD. PRO SOFTWARE

Parashuram Lokre, Manoj Kumar, Umashankar Y, Vivekanand A
Deparment of Civil Engineering
Guru Nanak Dev Engineering College Bidar

Abstract

Analysis and design of a any building needs basic knowledge of structural analysis, so in this project considering basic idealization how the structure is to analyze and design is to be carry out is covered by considering some ongoing projects. In the project tried to cover all the necessary analysis data consideration for different loads and load combination is considered manually and results are compared with software readings by considering same and design data loads and load combination. In detailed detailing is also tried to cover as per the IS code provisions.

1. INTRODUCTION

1.1 ABOUT THE PROJECTS

We started our project through inspection of drawings of function hall building which is proposed to locate at K.R.Nagar. The project work deals with the structural analysis and design of a proposed multipurpose hall located at K.R.Nagar, Having C+G+1 floors. Architectural plans were provided. With the given plan, beam column layout was plotted, with the help of which slabs were identified as one way, two way.Loads were worked out using IS:875-1987. Here the analysis of the structure is carried out using the software STAAD.Pro V8i. 3D Model were
considered and are analyzed for Dead loads and Live loads. The design is carried out as according to IS: 456:2000. Design aids of SP 16 are considered for the design of section. After the completion of function hall building we did many more buildings which include Residential building consists of $\mathrm{C}+\mathrm{G}+2$ floors and a Hospital building having $\mathrm{G}+3$ floors.

1.3 ABOUT THE SOFTWARES STAAD.Pro:

STAAD.Pro is one of the leading analysis and design software used in the industry. It stands for Structural Analysis and Design Program.

STAAD.Pro is designed for engineers by engineers who understand the process of modeling, analysis and designing a structure. It is a general purpose program for performing the analysis and design of a wide variety of structures.

The basic three activities which are to be carried out to achieve the goals are:

- Model Generation

- Calculation to obtain the analytical results.
- Result verification (Post processing).

SALIENT FEATURES:

- Following are the salient features of STAAD.Pro
- STAAD.Pro is the only structural analysis and design software which meets the rigid requirements of NUPIC/NCR (Nuclear Regulatory Commission).
- STAAD.Pro has the building codes of the countries including India, US of A, Britain, among others. More are constantly being added.
- STAAD.Pro easily generates comprehensive custom reports and it can be exported to Microsoft word or Microsoft excel.
- STAAD.Pro Structure wizard contains a library of trusses and frames using which models can be generated quickly.

2. PROJECTS UNDERTAKEN

2.1 FUNCTION HALL LOCATED AT K .R. NAGAR.

2.1.1 TECHNICAL DATA:

$>$ Structure type : Framed structure
$>$ No of storey : Cellar plus Ground plus one
$>$ Height of cellar floor :3m
$>$ Height of ground floor :3.4m
$>$ Height of first floor $: 3 \mathrm{~m}$
$>$ SBC of soil $\quad: 200 \mathrm{KN} / \mathrm{m}^{2}$
$>$ Grade of concrete $\mathrm{f}_{\mathrm{ck}} \quad: 20 \mathrm{~N} / \mathrm{mm}^{2}$
$>$ Grade of steel $\mathrm{f}_{\mathrm{y}} \quad: 415 \mathrm{~N} / \mathrm{mm}^{2}$

Fig 1: Cellar plan

2.1.2 CALCULATION OF LOADS

Load calculations for Rooms in Cellar:

Assume 150 mm thick slab
Dead load of slab $=0.15 \times 25 \quad=3.75 \mathrm{kN} / \mathrm{m}^{2}$
Live load $\quad=2 \mathrm{kN} / \mathrm{m}^{2}$
Floor finish and partition $\quad=2 \mathrm{kN} / \mathrm{m}^{2}$

$$
\text { Total }=7.75 \approx 8 \mathrm{kN} / \mathrm{m}^{2}
$$

Load on beam AC and GI:

Assume beam size 230 mmx 450 mm
Self weight of beam $=0.23 \times 0.45 \times 25=2.587$ kN/m

Load from
slab $=\frac{w l_{x}}{6}\left[3-\left(\frac{l_{x}}{l_{y}}\right)^{2}\right]=\frac{8 \times 4.80}{6}\left[3-\left(\frac{4.8}{4.93}\right)^{2}\right]=1$
$3.13 \mathrm{kN} / \mathrm{m}$
Weight of wall $=0.225 \times 2.8 \times 20$ $=12.6 \mathrm{kN} / \mathrm{m}$

Total $=28.3 \approx 30 \mathrm{kN} / \mathrm{m}$

Load on beam 1-2 along A and I:

Assume beam size 230 mmx 380 mm
Self weight of beam $=0.23 \times 0.38 \times 25=2.185$ kN/m

Load from slab $=\frac{w l_{x}}{3}=\frac{8 \times 4.80}{3} \quad=12.8$
kN/m
weight of wall
$=12.6$
kN / m Total $=27.58 \approx 30 \mathrm{kN} / \mathrm{m}$

Load calculation for Hall and kitchen:

Assume 150 mm thick slab
Dead load of slab $=0.15 \times 25 \quad=3.75 \mathrm{kN} / \mathrm{m}^{2}$

$$
\text { Liveload } \quad=4 \mathrm{kN} / \mathrm{m}^{2}
$$

Floor finish and partition $\quad=2 \mathrm{kN} / \mathrm{m}^{2}$

Total $=9.75 \approx 10 \mathrm{kN} / \mathrm{m}^{2}$
Load on beam CG along 1 :
Assume beam size 230 mmx 550 mm
Self weight of beam $=0.23 \times 0.55 \times 25=3.16$
Load from slab $=\frac{10 \times 4.80}{6}\left[3-\left(\frac{4.8}{7.24}\right)^{2}\right]=20.48$
Weight of wall $=0.225 \times 2.8 \times 20=12.6$

Load calculation for Hall and kitchen:

Total $=36.24 \approx 37$

Load on beam 1-2 along \mathbf{C} and \mathbf{G} :

Self weight of beam $=0.23 \times 0.38 \times 25=2.185$ kN/m

Load from slab $=\frac{8 X 4.80}{3}+\frac{10 \times 4.80}{3}=28.8 \mathrm{kN} / \mathrm{m}$
$\underline{\text { Weight of wall }=0.225 \times 2.8 \times 20=12.6 \mathrm{kN} / \mathrm{m}}$

Total $=43.5 \approx 44 \mathrm{kN} / \mathrm{m}$

Load on beam CG along 2:

Self weight of beam $=0.23 \times 0.55 \times 25=3.16$ kN/m

Load from slab $=$
$\frac{10 \times 4.80}{6}\left[3-\left(\frac{4.8}{7.24}\right)^{2}\right]+\frac{10 \times 3.76}{6}\left[3-\left(\frac{3.76}{6.22}\right)^{2}\right]$ $=37 \mathrm{kN} / \mathrm{m}$

Total $=41 \mathrm{kN} / \mathrm{m}$
Load on beam AC \& GI along 2:
Self weight of beam $=0.23 \times 0.45 \times 25=2.587$ kN/m

Load from slab $=13.13+16.5=29.63 \mathrm{kN} / \mathrm{m}$
Weight of wall $=0.225 \times 2.8 \times 20=12.6$
kN / m Total $=45 \mathrm{kN} / \mathrm{m}$
Load on beam BE \& EH along 3 to7:
Assume beam size $=300 \mathrm{mmx} 750 \mathrm{~mm}$
Load
from
slab $=\frac{10 X 3.66}{6}\left[3-\left(\frac{3.66}{6.22}\right)^{2}\right] X 2=32.37 \mathrm{kN} / \mathrm{m}$
Self weight of beam $=0.3 \times 0.75 \times 25$ $=5.625 \mathrm{kN} / \mathrm{m}_{\mathrm{Z}}$ Total $=38 \mathrm{kN} / \mathrm{m}$

Load on beam 3-4 along B \& H :
Self weight of beam $=0.23 \times 0.38 \times 25=2.185$ kN/m

Load from slab $=\frac{10 \times 3.66}{3}=12.2 \mathrm{kN} / \mathrm{m}$
Weight of wall $=0.225 \times 3.4 \times 20=15.3 \mathrm{kN} / \mathrm{m}$

Total $=29.6 \approx 30 \mathrm{kN} / \mathrm{m}$
Load on beam 3-4 along E:
Self weight of beam $=0.23 \times 0.38 \times 25=2.185$ kN/m

Load from slab $=\frac{10 \times 3.66}{3} \times 2=24.4 \mathrm{kN} / \mathrm{m}$ Total $=26.5 \approx 27 \mathrm{kN} / \mathrm{m}$

Load on beam CG along 8:

Self weight of beam $=0.23 \times 0.55 \times 25=3.16$ kN/m

Load
from
slab=
$\frac{10 \times 3.66}{6}\left[3-\left(\frac{3.66}{6.22}\right)^{2}\right]+\frac{10 \times 4.02}{6}\left[3-\left(\frac{4.025}{6.375}\right)^{2}\right]$
$=33.63 \mathrm{kN} / \mathrm{m}$ Total $=36.7 \approx 37 \mathrm{kN} / \mathrm{m}$

Load on beam 8-9 along C\&G:

Self weight of beam $=0.23 \times 0.38 \times 25=2.185$
kN/m
Load from slab $\quad=\frac{10 \times 4.025}{3}=13.416 \mathrm{kN} / \mathrm{m}$
Weight of wall= $0.225 \times 3.4 \times 20=15.3 \mathrm{kN} / \mathrm{m}$
Total $=30 \mathrm{kN} / \mathrm{m}$

Load on beam 8-9 along B\&H:

Self weight of beam $=0.23 \times 0.38 \times 25=2.185$
kN/m
$\underline{\text { Weight of wall }=0.225 \times 3.4 \times 20=15.3 \mathrm{kN} / \mathrm{m}}$

Total $=17.48 \approx 18 \mathrm{kN} / \mathrm{m}$

Load calculation for stair case:

Assume Tread $=260 \mathrm{~mm}$, Rise $=150 \mathrm{~mm}$
Self weight of flight slab along the slope for $1 \mathrm{~m}^{2}=0.15 \times 25=3.75 \mathrm{kN} / \mathrm{m}^{2}$

Slab for $\frac{1 \mathrm{~m}}{}$ horizontal
span $=1 \times 1 \times 0.15 \times 25 \sqrt{\frac{0.15^{2}+0.26^{2}}{0.26^{2}}}=4.33 \mathrm{kN} / \mathrm{m}^{2}$

Weight of one step for 1 m width $=0.5 \times 1 \times 0.26 \times 0.15 \times 25=0.4875$

No. of steps in a horizontal span $=\frac{1}{T}=(1 / 0.26)=3.846$

Self weight of step for one horizontal span=wt. of one step x no. of steps in 1 m horizontal span $=0.4875 \times 3.846=1.875$ $\mathrm{kN} / \mathrm{m}^{2}$

Therefore total weight $=$ weight of slab $=4.329$ =weight of step $=1.875$
$=$ live load $=5$ Floor finish and partiti $=2$ $\mathrm{kN} / \mathrm{m}^{2}$ Total $=13.2 \approx 15 \mathrm{kN} / \mathrm{m}^{2}$

Load on beam $=15 x(4.125 / 2)=31 \mathrm{kN} / \mathrm{m}$

Load on beam BC\&GH along 8:

Self weight of beam $=0.23 \times 0.45 \times 25=2.587$ kN/m

Load from slab and stair $\underline{\text { case }}=16.18+31=47.18 \mathrm{kN} / \mathrm{m}$ Total $=50 \mathrm{kN} / \mathrm{m}$

Load on beam CG along 9:

Self weight of beam $=0.23 \times 0.55 \times 25=3.16$
kN / m Load from slab $=17.45 \mathrm{kN} / \mathrm{m}$
Weight of wall $=0.225 \times 3.4 \times 20=15.3 \mathrm{kN} / \mathrm{m}$
$=35.9 \approx 36 \mathrm{kN} / \mathrm{m}$

Load on beam BC \& GH along 9:

Self weight of beam $=0.23 \times 0.45 \times 25=2.587$
kN / m Load from stair case $=31 \mathrm{kN} / \mathrm{m}$
Weight of wall $=0.225 \times 3.4 \times 20=15.3 \mathrm{kN} / \mathrm{m}$
$=48.8 \approx 50 \mathrm{kN} / \mathrm{m}$

Load calculations for Rooms in ground floor:

Assume 150 mm thick slab
Dead load of slab=0.15x25 $=3.75 \mathrm{kN} / \mathrm{m}^{2}$ Live load $=2 \mathrm{kN} / \mathrm{m}^{2}$

Floor finish and partition $=2 \mathrm{kN} / \mathrm{m}^{2}$
Total $=7.75 \approx 8 \mathrm{kN} / \mathrm{m}^{2}$
Load on beam AC \& GI along 1:
Assume beam size $230 \times 450 \mathrm{~mm}$
Self weight of beam $=0.23 \times 0.45 \times 25=2.587$
kN/m
Load from $\operatorname{slab}=\frac{8 \times 4.8}{6}\left[3-\left(\frac{4.8}{4.93}\right)^{2}\right]=13.13$
kN / m
Weight of wall $=0.225 \times 2.9 \times 20=13.05 \mathrm{kN} / \mathrm{m}$
Total $=28.7 \approx 30 \mathrm{kN} / \mathrm{m}$

Load on beam 1-2 along A \& I:

Assume beam size 230x380 mm
Self weight of beam $=0.23 \times 0.38 \times 25=2.185$
kN / m Load from slab $=\frac{834.8}{3}=12.8 \mathrm{kN} / \mathrm{m}$
$\underline{\text { Weight of wall }=0.225 \times 2.9 \times 20=13.05 \mathrm{kN} / \mathrm{m}}$
Total $=28.03 \approx 30 \mathrm{kN} / \mathrm{m}$

Load on beam CG along 1:

Self weight of beam $=0.23 \times 0.55 \times 25=3.16$ kN / m Weight of wall $=0.225 \times 2.9 \times 20$ $=13.05 \mathrm{kN} / \mathrm{m}$ Total $=16.2 \approx 17 \mathrm{kN} / \mathrm{m}$

Load on beam 1-2 along C and G :

Self weight of beam $=0.23 \times 0.38 \times 25=2.185$
kN / m Load from slab $=\frac{8 \times 4.8}{3}=12.8 \mathrm{kN} / \mathrm{m}$
Weight of wall $=0.225 \times 2.9 \times 20=13.05 \mathrm{kN} / \mathrm{m}$
Total $=28.3 \approx 30 \mathrm{kN} / \mathrm{m}$

Load calculations for Balcony:

Assume 150 mm thick slab
Dead load of slab $=0.15 \times 25=3.75 \mathrm{kN} / \mathrm{m}^{2}$
Live load $=3 \mathrm{kN} / \mathrm{m}^{2}$ Floor finish and partition $=2 \mathrm{kN} / \mathrm{m}^{2}$ Total $=8.75 \approx 9 \mathrm{kN} / \mathrm{m}^{2}$

Load on beam BC \& GH along 3 to7:
Self weight of beam $=0.23 \times 0.45 \times 25=2.587$
kN / m Load from slab $=9 \times 3.6=32.4 \mathrm{kN} / \mathrm{m}$
Total $=34.9 \approx 35 \mathrm{kN} / \mathrm{m}$

Load on beam AC \& GI along 2:

Self weight of beam $=0.23 \times 0.45 \times 25=2.587$
kN / m Load from slab $=13.13+(9 \mathrm{x} 1.8)=29.33$
kN / m Weight of wall $=0.225 \times 2.9 \times 20$
$=13.05 \mathrm{kN} / \mathrm{m}$ Total $=45 \mathrm{kN} / \mathrm{m}$

Load on beam 3-4 along B \& H:

Self weight of beam $=0.23 \times 0.38 \times 25=2.185$
kN / m Weight of wall $=0.225 \times 2.9 \times 20$
$=13.05 \mathrm{kN} / \mathrm{m}$ Total $=15.24 \approx 16 \mathrm{kN} / \mathrm{m}$

Load on beam BC \& GH along 8:

Self weight of beam $=0.23 \times 0.45 \times 25=2.587$
kN / m Load from slab $=9 \mathrm{x} 1.8=16.2 \mathrm{kN} / \mathrm{m}$
Load from stair case $=31 \mathrm{kN} / \mathrm{m}=49.7 \approx 50$ kN/m

Load on beam CG along 8:

Self weight of beam $=0.23 \times 0.55 \times 25=3.16$ kN/m

Load from slab $=9 x 1.5+9 x 0.9=21.6 \mathrm{kN} / \mathrm{m}$
DOI- 10.18486/ijcsnt.2021.10.02.07
ISSN: 2053-6283

Self weight of beam $=0.23 \times 0.38 \times 25=2.185$
kN / m Load from slab $=\frac{8 \times 4.5}{3}=12 \mathrm{kN} / \mathrm{m}$
Total $=14.18 \approx 15 \mathrm{kN} / \mathrm{m}$
Load on beam CG along 10:
Self weight of beam $=0.23 \times 0.55 \times 25=3.16$ kN/m

Load from slab $=\frac{8 \times 4.5}{6}\left[3-\left(\frac{4.5}{6.15}\right)^{2}\right]=14.78$
kN / m Total $=17.9 \approx 18 \mathrm{kN} / \mathrm{m}$
Load calculation for top roof :
Assume 140 mm thick slab
Dead load of slab $=0.14 \mathrm{x} 25 \times 1 \times 1=3.5$
$\mathrm{KN} / \mathrm{m}^{2}$ Live load $=2 \mathrm{kN} / \mathrm{m}^{2}$
Floor finish and partition $=2 \mathrm{kN} / \mathrm{m}^{2}$
Total $=7.5 \approx 8 \mathrm{kN} / \mathrm{m}^{2}$
Load on beam AC \& GI Along 1 :
Assume beam size 230x450 mm
Self weight of beam $=1 \times 0.23 \times 0.45 \times 25=$
$2.587 \mathrm{kN} / \mathrm{m}$ Load from slab $=\frac{8 \times 4.80}{6}\left[3-\left(\frac{4.8}{4.93}\right)^{2}\right]=13.13 \mathrm{kN} / \mathrm{m}$
wt of parapet wall $=8 \mathrm{kN} / \mathrm{m}$ Total $=23.7 \approx 25 \mathrm{kN} / \mathrm{m}$

Load on beam 1-2 along A\&I:

Assume beam size 230x380 mm
Self wt of beam $=0.23 \times 0$. $38 \mathrm{X} 25=2.185$ kN / m Load from slab $=\frac{884.80}{3}=12.8 \mathrm{kN} / \mathrm{m}$
 kN/m

Load on beam CG along 1:

Self wt of beam $=0.23 \times 0.55 \times 25=3.1625$ kN/m

Load from slab $=\frac{8 \times 4.80}{6}\left[3-\left(\frac{4.8}{7.24}\right)^{2}\right]=16.38$
kN / m wt of parapet wall $=8 \mathrm{kN} / \mathrm{m}$
Total $=27.54 \approx 30 \mathrm{kN} / \mathrm{m}$

Load on beam 1-2 along C \& G:

Self wt of beam $=0.23 \times 0.38 \times 25=2.185$ kN/m

Load from slab $=2[(8 \mathrm{X} 4.8) / 3]=25.6 \mathrm{kN} / \mathrm{m}$
Total $=27.78 \approx 30 \mathrm{kN} / \mathrm{m}$
Load on beam CG Along 2:
Self wt of beam $=0.23 \times 0.55 \times 25=3.1625$
kN / m Load from slab $=\frac{8 \times 4.80}{6}\left[3-\left(\frac{4.8}{7.24}\right)^{2}\right]+(8 \times 1.8 \times 1) \quad=30.78$
kN / m Total $=33.9 \approx 34 \mathrm{kN} / \mathrm{m}$
Load on beam AC \& GI Along 2:
Self wt of beam $=0.23 \times 0.45 \times 25=2.587$ kN/m

Load from slab $=(13.13+14.4)=27.53 \mathrm{kN} / \mathrm{m}$
Total $=30 \mathrm{kN} / \mathrm{m}$ Load on beam BH Along 3 to 7: Self wt of beam $=0.3 \times 0.75 \times 25=5.625$
kN / m Load from slab $=1 \mathrm{x} 1.8=14.4 \mathrm{kN} / \mathrm{m}$
Total $=20 \mathrm{kN} / \mathrm{m}$

Load on beam 3-4 Along B and H:

Self wt of beam $=0.23 \times 0.38 \times 25=2.185$
$\mathrm{kN} / \mathrm{m} \underline{\text { Load from parapet wall }=8 \mathrm{kN} / \mathrm{m}}$
Total $=15 \mathrm{kN} / \mathrm{m}$
Load on beam BC \& GH Along 8:

Self wt of beam $=0.23 \times 0.45 \times 25=2.587$
kN / m Load from slab $=14.4 \mathrm{kN} / \mathrm{m}$
Stair case $=31 \mathrm{kN} / \mathrm{m}$ Total $=47.9 \approx 50 \mathrm{kN} / \mathrm{m}$
Load on beam CG along 8:
Self wt of beam $=0.23 \times 0.55 \times 25=3.1625$
kN / m Load from
$l a b=14.4+\frac{8 \times 4.025}{6}\left[3-\left(\frac{4.025}{6.15}\right)^{2}\right]=\quad 28.20$
kN / m Total $=31.36 \approx 32 \mathrm{kN} / \mathrm{m}$
Load on beam 8-9 Along C and G:
Self weight of beam $=0.23 \times 0.38 \times 25=2.185$
kN / m Load from slab $=\frac{8 \times 4.025}{3}=10.73 \mathrm{kN} / \mathrm{m}$

Total $=12.9 \approx 15 \mathrm{kN} / \mathrm{m}$

Load on beam BC \& GH Along 9:

Self wt of beam $=0.23 \times 0.45 \times 25=2.587$
$\mathrm{kN} / \mathrm{mLoad}$ from stair case $=31 \mathrm{kN} / \mathrm{m}$
Load from parapet wall $=8 \mathrm{kN} / \mathrm{m}$
Total $=41.5 \approx 42 \mathrm{kN} / \mathrm{m}$

Load on beam CG along 9:

Self wt of beam $=0.23 \times 0.55 \times 25=3.1625$
kN / m Load from slab $=13.8 \mathrm{kN} / \mathrm{m}$

Fig-2: 3-D modelling

Load from parapet wall $=8 \mathrm{kN} / \mathrm{m}$
Total $=24.9 \approx 30 \mathrm{kN} / \mathrm{m}$

2.1.3 Design of slab:

Fig-3: Slab design
2.1.4 Design of corner slab (panel number 1\&3):
$\mathrm{L}_{\mathrm{x}}=4.725 \mathrm{~m}$
$\mathrm{L}_{\mathrm{y}}=4.825 \mathrm{~m}$
$\mathrm{L}_{\mathrm{y}} / \mathrm{L}_{\mathrm{x}}=1.02<2$
Therefore Design as Two way slab
Design ultimate load $\mathrm{w}_{\mathrm{u}}=12 \mathrm{kN} / \mathrm{m}^{2}$
Ultimate design moments:From Table 26 of IS456 2000 case-8
$\mathrm{L}_{\mathrm{y}} / \mathrm{Lx}=1.02$
Long Direction:Negative moment on continuous edge $=0.057 \times 12 \times 4.725^{2}$ $=15.27 \mathrm{KN}-\mathrm{m}$

Positive moment on mid span $=0.043 \times 12 \times 4.725^{2}=11.52 \mathrm{KN}-\mathrm{m}$

Negative moment on discontinuous edge $=11.52 / 2=5.76 \mathrm{KN}-\mathrm{m}$

Short Direction: Positive moment on mid span $=0.046 \times 12 \times 4.725^{2}=12.32 \mathrm{KN}-\mathrm{m}$

Negative moment on discontinuous edge $=6.16 \mathrm{KN}-\mathrm{m}$

Check for depth: $\mathrm{d}=\sqrt{\frac{M u}{0.138 f_{c k} b}}=$ $\sqrt{\frac{15.27 \times 10^{6}}{0.138 \times 20.1000}}=75 \mathrm{~mm}<150 \mathrm{~mm} \quad$ Hence OK

Reinforcement:

For short span: a) Positive moment on mid span=12.32KN-m

$$
\frac{M_{u}}{b d^{2}}=\frac{12.32 \times 10^{6}}{1000 \times 120^{2}}=0.86
$$

From SP 16,page number 48

$$
\mathrm{p}_{\mathrm{t}}=0.249
$$

$$
\mathrm{A}_{\mathrm{st}}=\frac{0.249 \times 1000 \times 120}{100}=299 \mathrm{~mm}^{2}
$$

Provide 8 mm dia at $170 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
b) Negative moment on discontinuous edge $=6.16 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{6.16 \times 10^{6}}{1000 \times 120^{2}}=0.43
$$

From SP 16, page number 48
$\mathrm{P}_{\mathrm{t}}=.120$
$\mathrm{A}_{\mathrm{st}}=\frac{0.120 \times 1000 \times 120}{100}=153 \mathrm{~mm}^{2}$
Provide 8 mm dia at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
For long span: a) Negative moment on discontinuous edge $=15.27 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{15.27 \times 10^{6}}{1000 \times 120^{2}}=1.06
$$

From SP 16,page number 48
$\mathrm{P}_{\mathrm{t}}=0.314$
$\mathrm{A}_{\mathrm{st}}=\frac{0.134 \times 1000 \times 120}{100}=376 \mathrm{~mm}^{2}$
Provide 8 mm dia at $130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
b) Positive moment on mid span $=11.52 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{11.52 \times 10^{6}}{1000 \times 120^{2}}=0.8
$$

From SP 16,page number 48

$$
\mathrm{p}_{\mathrm{t}}=0.233
$$

$$
\mathrm{A}_{\mathrm{st}}=\frac{0.233 \times 1000 \times 120}{100}=261 \mathrm{~mm}^{2}
$$

Provide 8 mm dia at $190 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
c) Negative moment on discontinuous edge $=5.76 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{5.76 \times 10^{6}}{1000 \times 120^{2}}=0.4
$$

From SP 16,page number 48

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{t}}=0.114 \\
& \mathrm{~A}_{\mathrm{st}}=\frac{0.114 \times 1000 \times 120}{100}=137 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 8 mm dia at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

2.1.5 Design of Intermediate panel(panel number2):

$L_{x}=4.725 m$
$L_{y}=7.175 \mathrm{~m}$
$\mathrm{L}_{\mathrm{y}} / \mathrm{L}_{\mathrm{x}}=1.52<2$
Therefore Design as Two way slab

Design ultimate load $\mathrm{w}_{\mathrm{u}}=15 \mathrm{kN} / \mathrm{m}^{2}$
Ultimate design moments: From Table 26 of IS456 2000 case3 $L_{y} / L_{x}=1.02$

Short Direction:Negative moment on continuous
edge $=0.069 \times 15 \times 4.725^{2}$ $=23.11 \mathrm{KN}-\mathrm{m}$

Positive moment on mid span $=0.053 \times 15 \times 4.725^{2}=17.72 \mathrm{KN}-\mathrm{m}$

Negative moment on discontinuous edge $=17.72 / 2=8.87 \mathrm{KN}-\mathrm{m}$

Long Direction: Positive moment on mid span $=0.028 \times 15 \times 4.725^{2}=9.372 \mathrm{KN}-\mathrm{m}$

Negative moment on continuous edge $=0.037 \times 15 \times 4.725^{2}$
$=12.39 \mathrm{KN}-\mathrm{m}$
Negative moment on discontinuous edge $=4.76 \mathrm{KN}-\mathrm{m}$

Reinforcement:

For short span:

a) Positive moment on mid span $=17.72 \mathrm{KN}-$ m
$\frac{M_{u}}{b d^{2}}=\frac{17.72 \times 10^{6}}{1000 \times 120^{2}}=1.23$
From SP 16,page number 48
$\mathrm{p}_{\mathrm{t}}=0.34$
$\mathrm{A}_{\mathrm{st}}=\frac{0.34 \times 1000 \times 120}{100}=408 \mathrm{~mm}^{2}$
Provide 8 mm dia at $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
b) Negative moment on discontinuous edge $=8.87 \mathrm{KN}-\mathrm{m}$
$\frac{M_{u}}{b d^{2}}=\frac{6.16 \times 10^{6}}{1000 \times 120^{2}}=0.395$
From SP 16,page number 48

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{t}}=.115 \\
& \mathrm{~A}_{\mathrm{st}}=\frac{0.120 \times 1000 \times 120}{100}=212 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 8 mm dia at $240 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
c) Negative moment on continuous edge $=23.11 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{23.11 \times 10^{6}}{1000 \times 120^{2}}=1.6
$$

From SP 16,page number 48
$\mathrm{p}_{\mathrm{t}}=0.4$
$\mathrm{A}_{\mathrm{st}}=\frac{0.4 \times 1000 \times 120}{100}=480 \mathrm{~mm}^{2}$

Provide 8 mm dia at $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

For long span:

a) Negative moment on continuous edge $=12.39 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{12.39 \times 10^{6}}{1000 \times 120^{2}}=0.86
$$

From SP 16,page number 48

$$
\mathrm{P}_{\mathrm{t}}=0.249
$$

$\mathrm{A}_{\mathrm{st}}=\frac{0.249 \times 1000 \times 120}{100}=285 \mathrm{~mm}^{2}$
Provide 8 mm dia at $170 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
b) Positive moment on mid span $=9.372 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{9.372 \times 10^{6}}{1000 \times 120^{2}}=0.65
$$

From SP 16, page number 48
$\mathrm{p}_{\mathrm{t}}=0.187$
$\mathrm{A}_{\mathrm{st}}=\frac{0.233 \times 1000 \times 120}{100}=218 \mathrm{~mm}^{2}$
Provide 8 mm dia at $220 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
c) Negative moment on discontinuous edge=4.7 KN-m

$$
\frac{M_{u}}{b d^{2}}=\frac{4.7 \times 10^{6}}{1000 \times 120^{2}}=0.21
$$

From SP 16,page number 48
$\mathrm{P}_{\mathrm{t}}=0.085$
$\mathrm{A}_{\mathrm{st}}=\frac{0.085 \times 1000 \times 120}{100}=153 \mathrm{~mm}^{2}$
Provide 8 mm dia at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

2.1.6 Design of panel number 4:

$L_{x}=3.6 \mathrm{~m}$
$\mathrm{L}_{\mathrm{y}}=6 \mathrm{~m}$
$\mathrm{L}_{\mathrm{y}} / \mathrm{L}_{\mathrm{x}}=1.67<2$
Therefore Design as Two way slab
Design ultimate load $\mathrm{w}_{\mathrm{u}}=15 \mathrm{kN} / \mathrm{m}^{2}$

Ultimate design moments:

From Table 26 of IS456 2000 case3
$\mathrm{L}_{\mathrm{y}} / \mathrm{L}_{\mathrm{x}}=1.02$

Short Direction:

Negative moment on continuous edge $=0.061 \times 15 \times 3.6^{2}$
$=11.86 \mathrm{KN}-\mathrm{m}$

Positive moment on mid span $=0.047 \times 15 \times 3.6^{2}=9.142 \mathrm{KN}-\mathrm{m}$

Negative moment on discontinuous edge $=9.142 / 2=4.57 \mathrm{KN}-\mathrm{m}$

Long Direction:

Positive moment on mid span $=0.028 \times 15 \times 3.6^{2}=5.52 \mathrm{KN}-\mathrm{m}$

Negative moment on continuous edge $=0.037 \times 15 \times 3.6^{2}=7.19 \mathrm{KN}-\mathrm{m}$

Negative moment on discontinuous edge $=2.73 \mathrm{KN}-\mathrm{m}$

Reinforcement:

For short span:

a) Positive moment on mid span $=9.142 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{9.142 \times 10^{6}}{1000 \times 120^{2}}=0.41
$$

From SP 16,page number 48

$$
\mathrm{p}_{\mathrm{t}}=0.116
$$

$$
\mathrm{A}_{\mathrm{st}}=\frac{0.116 \times 1000 \times 120}{100}=209 \mathrm{~mm}^{2}
$$

Provide 8 mm dia at $230 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
b) Negative moment on discontinuous edge $=4.57 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{4.57 \times 10^{6}}{1000 \times 120^{2}}=0.203
$$

From SP 16,page number 48

$$
\mathrm{P}_{\mathrm{t}}=.085
$$

$$
\mathrm{A}_{\mathrm{st}}=\frac{0.085 \times 1000 \times 120}{100}=153 \mathrm{~mm}^{2}
$$

Provide 8 mm dia at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
c) Negative moment on continuous edge $=11.86 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{11.86 \times 10^{6}}{1000 \times 120^{2}}=0.53
$$

From SP 16,page number 48
$\mathrm{p}_{\mathrm{t}}=0.147$
$\mathrm{A}_{\mathrm{st}}=\frac{0.147 \times 1000 \times 120}{100}=265 \mathrm{~mm}^{2}$
Provide 8 mm dia at $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

For long span:

a) Negative moment on continuous edge=7.19 KN-m
$\frac{M_{u}}{b d^{2}}=\frac{7.19 \times 10^{6}}{1000 \times 120^{2}}=0.139$
From SP 16,page number 48
$\mathrm{P}_{\mathrm{t}}=0.090$
$\mathrm{A}_{\mathrm{st}}=\frac{0.090 \times 1000 \times 120}{100}=162 \mathrm{~mm}^{2}$
Provide 8 mm dia at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
b) Positive moment on mid span $=5.5 \mathrm{KN}-\mathrm{m}$
$\frac{M_{u}}{b d^{2}}=\frac{5.5 \times 10^{6}}{1000 \times 120^{2}}=0.24$
From SP 16,page number 48
$\mathrm{p}_{\mathrm{t}}=0.085$
$\mathrm{A}_{\mathrm{st}}=\frac{0.085 \times 1000 \times 120}{100}=153 \mathrm{~mm}^{2}$
Provide 8 mm dia at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
c) Negative moment on discontinuous edge $=2.73 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{2.73 \times 10^{6}}{1000 \times 120^{2}}=0.121
$$

From SP 16,page number 48

$$
\mathrm{P}_{\mathrm{t}}=0.085
$$

$$
\mathrm{A}_{\mathrm{st}}=\frac{0.085 \times 1000 \times 120}{100}=153 \mathrm{~mm}^{2}
$$

Provide 8 mm dia at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

2.1.7 Design of panel number 5:

$L_{x}=3.9 \mathrm{~m}$
$L_{y}=6.478 m$
$\mathrm{L}_{\mathrm{y}} / \mathrm{L}_{\mathrm{x}}=1.66<2$
Therefore Design as Two way slab
Design ultimate load $\mathrm{w}_{\mathrm{u}}=15 \mathrm{kN} / \mathrm{m}^{2}$

Ultimate design moments:

From Table 26 of IS456 2000 case 7
$\mathrm{L}_{\mathrm{y}} / \mathrm{Lx}_{\mathrm{x}}=1.02$

Short Direction:

Negative moment on continuous edge $=0.090 \times 15 \times 3.9^{2}=20.54 \mathrm{KN}-\mathrm{m}$

Positive moment on mid span $=0.069 \times 15 \times 3.9^{2}=15.74 \mathrm{KN}-\mathrm{m}$

Negative moment on discontinuous edge $=15.74 / 2=7.87 \mathrm{KN}-\mathrm{m}$

Long Direction:

Positive moment on mid span $=0.043 \times 15 \times 3.6^{2}=9.81 \mathrm{KN}-\mathrm{m}$

Negative moment on discontinuous edge $=4.91 \mathrm{KN}-\mathrm{m}$

Reinforcement:

For short span: a) Positive moment on mid span $=15.74 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{15.74 \times 10^{6}}{1000 \times 120^{2}}=1.093
$$

From SP 16,page number 48
$\mathrm{p}_{\mathrm{t}}=0 . .327$

$$
\mathrm{A}_{\mathrm{st}}=\frac{0.327 \times 1000 \times 120}{100}=393 \mathrm{~mm}^{2}
$$

Provide 8 mm dia at $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
b) Negative moment on discontinuous edge $=7.9 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{7.9 \times 10^{6}}{1000 \times 120^{2}}=0.5465
$$

From SP 16, page number 48

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{t}}=0.163 \\
& \mathrm{~A}_{\mathrm{st}}=\frac{0.163 \times 1000 \times 120}{100}=240 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 8 mm dia at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
c) Negative moment on continuous edge $=20.54 \mathrm{KN}-\mathrm{m}$

$$
\frac{M_{u}}{b d^{2}}=\frac{20.54 \times 10^{6}}{1000 \times 120^{2}}=1.46
$$

From SP 16,page number 48
$\mathrm{p}_{\mathrm{t}}=0.448$
$\mathrm{A}_{\mathrm{st}}=\frac{0.448 \times 1000 \times 120}{100}=538 \mathrm{~mm}^{2}$
Provide 8 mm dia at $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

For long span:

a) Positive moment on mid span $=9.81 \mathrm{KN}-\mathrm{m}$
$\frac{M_{u}}{b d^{2}}=\frac{9.81 \times 10^{6}}{1000 \times 120^{2}}=0.68$
From SP 16,page number 48
$\mathrm{p}_{\mathrm{t}}=0.2$
$\mathrm{A}_{\mathrm{st}}=\frac{0.085 \times 1000 \times 120}{100}=240 \mathrm{~mm}^{2}$
Provide 8 mm dia at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
b) Negative moment on discontinuous edge $=4.91 \mathrm{KN}-\mathrm{m}$
$\frac{M_{u}}{b d^{2}}=\frac{4.91 \times 10^{6}}{1000 \times 120^{2}}=0.34$
From SP 16,page number 48
$\mathrm{P}_{\mathrm{t}}=0.2$
$\mathrm{A}_{\mathrm{st}}=\frac{0.2 \times 1000 \times 120}{100}=240 \mathrm{~mm}^{2}$
Provide 8 mm dia at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

2.2.DESIGN OF BEAMS

Fig-4: Design of beams

Design of beam b1:

a) Maximum positive B.M $=1.5 \times 25=38$ $\mathrm{kN}-\mathrm{m}$
b) Maximum negative B. $\mathrm{M}=1.5 \times 57=86$ $\mathrm{kN}-\mathrm{m}$
c) Maximum S.F $=70 \times 1.5=105 \mathrm{kN}$
a) $\frac{M_{u}}{b d^{2}}=\frac{38 \times 10^{6}}{230 \times 330^{2}}=1.52 \quad$ From \quad SP $\quad 16$
$\mathrm{P}_{\mathrm{t}}=0.475$
$\mathrm{A}_{\mathrm{st}}=\frac{0.475 \times 230 \times 330}{100}=360 \mathrm{~mm}^{2}$

Therefore Provide $\phi 12 \mathrm{~mm}$
4 no.s(452 mm ${ }^{2}$)
b) $\frac{M_{u}}{b d^{2}}=\frac{86 \times 10^{6}}{230 \times 330^{2}}=3.43 \quad$ From SP 16
$\mathrm{P}_{\mathrm{t}}=1.175 \& \mathrm{P}_{\mathrm{c}}=0.24$
$\mathrm{A}_{\mathrm{st}}=\frac{1.175 \times 230 \times 330}{100}=892 \quad \mathrm{~mm}^{2}$
Provide $\phi 16 \mathrm{~mm}$ of 5 no.s
$\mathrm{A}_{\mathrm{sc}}=\frac{0.24 \times 230 \times 330}{100}=183 \quad \mathrm{~mm}^{2}$
Provide $\phi 12 \mathrm{~mm}$ of 2 no.s
c) Max S.F
$\tau_{V}=\frac{V_{u}}{b d}=\frac{105 \times 10^{\mathrm{s}}}{230 \times 330}=1.38$
$\tau_{c}=0.65$ (From IS 456 Table 19)
$\frac{V_{u s}}{d}=\frac{(1.38-0.65) 230 \times 330}{33 \times 10^{\mathrm{s}}}=1.68$
Provide $\phi 8$ mm 2 legged stirrups @ 200 mm c/c

Design of beam b2:

a) Maximum
B. $M=1.5 \times 84=126 \mathrm{kN}-\mathrm{m}$
b) Maximum
B. $\mathrm{M}=1.5 \times 138=207 \mathrm{kN}-\mathrm{m}$
c) Maximum S.F $=130 \times 1.5=195 \mathrm{kN}$
a) $\frac{M_{u}}{b d^{2}}=\frac{126 \times 10^{6}}{300 \times 720^{2}}=0.81 \quad$ From SP 16
$\mathrm{P}_{\mathrm{t}}=0.235$
$\mathrm{A}_{\mathrm{st}}=\frac{0.235 \times 300 \times 720}{100}=508 \mathrm{~mm}^{2}$
Therefore Provide $\phi 16 \mathrm{~mm} 3$ no.s(603 mm ${ }^{2}$)
b) $\frac{M_{u}}{b d^{2}}=\frac{207 \times 10^{6}}{300 \times 720^{2}}=1.33 \quad$ From SP 16

Page $48, \mathrm{P}_{\mathrm{t}}=0.405$
$\mathrm{A}_{\mathrm{st}}=\frac{0.405 \times 300 \times 720}{100}=875 \quad \mathrm{~mm}^{2}$
Provide $\phi 20 \mathrm{~mm}$ of 3 no.s $\left(942 \mathrm{~mm}^{2}\right)$
c) Max S.F
$\tau_{V}=\frac{V_{u}}{b d}=\frac{195 X 10^{\mathrm{s}}}{300 X 720}=0.902$
$\tau_{c}=0.45$ (From IS 456 Table 19)
$\frac{V_{u s}}{d}=\frac{(0.902-0.45) 300 \times 720}{72 \times 10^{\mathrm{s}}}=1.36$
Provide $\phi 8$ mm 2 legged stirrups @ $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Design of beam b3:

a) Maximum positive
B. $\mathrm{M}=1.5 \times 27=40.5 \mathrm{kN}-\mathrm{m}$
b) Maximum negative
B. $\mathrm{M}=1.5 \times 86=129 \mathrm{kN}-\mathrm{m}$
c) Maximum S.F $=82 \times 1.5=123 \mathrm{kN}$
a) $\frac{M_{u}}{b d^{2}}=\frac{40.5 \times 10^{6}}{230 \times 420^{2}}=0.998 \quad$ From SP
$16 \mathrm{P}_{\mathrm{t}}=0.295$
$\mathrm{A}_{\mathrm{st}}=\frac{0.295 \times 230 \mathrm{x} 420}{100}=285 \mathrm{~mm}^{2}$
Therefore Provide $\phi 12 \mathrm{~mm} 3$ no.s
b) $\frac{M_{u}}{b d^{2}}=\frac{129 \times 10^{6}}{230 \times 420^{2}}=3.18 \quad$ From SP 16

Page 48, $\mathrm{P}_{\mathrm{t}}=1.091 \& \mathrm{P}_{\mathrm{c}}=0.141$
$\mathrm{A}_{\mathrm{st}}=\frac{1.091 \times 230 \times 420}{100}=1054 \quad \mathrm{~mm}^{2}$
Provide $\phi 12 \mathrm{~mm}$ of 2 no.s
$\mathrm{A}_{\mathrm{sc}} \quad=\frac{0.2 \times 230 \times 420}{100}=194 \quad \mathrm{~mm}^{2}$
Provide $\phi 20 \mathrm{~mm}$ of 3 no.s $\left(942 \mathrm{~mm}^{2}\right)$
c) Max S.F
$\tau_{V}=\frac{V_{u}}{b d}=\frac{123 \times 10^{\mathrm{s}}}{230 \times 420}=1.27$
$\tau_{c}=0.63$ (From IS 456 Table 19)
$\frac{V_{u s}}{d}=\frac{(1.27-0.633) 230 \times 420}{42 \times 10^{\mathrm{B}}}=1.48$
Provide $\$ 8 \mathrm{~mm} 2$ legged stirrups @ 230 mm c/c

Design of beam b4:

a) Maximum
B. $\mathrm{M}=1.5 \times 106=159 \mathrm{kN}-\mathrm{m}$
b) Maximum
B. $\mathrm{M}=1.5 \times 175=263 \mathrm{kN}-\mathrm{m}$
c) Maximum S.F $=146 \times 1.5=219 \mathrm{kN}$
a) $\frac{M_{u}}{b d^{2}}=\frac{159 \times 10^{6}}{230 \times 500^{2}}=2.76 \quad$ From SP 16
$\mathrm{P}_{\mathrm{t}}=0.958$

$$
\mathrm{A}_{\mathrm{st}}=\frac{0.958 \times 230 \times 500}{100}=1101 \mathrm{~mm}^{2}
$$

Therefore Provide $\phi 20 \mathrm{~mm} 4$ no.s
b) $\frac{M_{u}}{b d^{2}}=\frac{263 \times 10^{6}}{230 \times 500^{2}}=4.57 \quad$ From SP 16

Page 48, $\mathrm{P}_{\mathrm{t}}=1.512 \& \mathrm{P}_{\mathrm{c}}=0.585$

$$
\mathrm{A}_{\mathrm{st}}=\frac{1.512 \times 230 \times 500}{100}=1738.8 \mathrm{~mm}^{2}
$$

Provide $\phi 25 \mathrm{~mm}$ of 4 no.s

$$
\mathrm{A}_{\mathrm{sc}} \quad=\frac{0.585 \times 230 \times 500}{100}=673 \quad \mathrm{~mm}^{2}
$$

Provide $\phi 16 \mathrm{~mm}$ of 4 no.s
c) Max S.F

$$
\tau_{V}=\frac{v_{u}}{b d}=\frac{219 \times 10^{\mathrm{s}}}{230 \times 500}=1.9
$$

$\tau_{c}=0.78$ (From IS 456 Table 19)
$\frac{V_{u s}}{d}=\frac{(1.9-0.78) 230 \times 500}{50 \times 10^{\mathrm{s}}}=2.58$
Provide $\phi 8$ mm 2 legged stirrups @ $140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Design of beam b5:

a) Maximum positive B. $\mathrm{M}=1.5 \times 19=29$ $\mathrm{kN}-\mathrm{m}$
b) Maximum negative B. $M=1.5 \times 64=96$ $\mathrm{kN}-\mathrm{m}$
c) Maximum S.F $=90 \times 1.5=135 \mathrm{kN}$
a) $\frac{M_{u}}{b d^{2}}=\frac{29 \times 10^{6}}{230 \times 420^{2}}=0.71 \quad$ From SP 16
$\mathrm{P}_{\mathrm{t}}=0.205$
$\mathrm{A}_{\mathrm{st}}=\frac{0.205 \times 230 \mathrm{x} 420}{100}=200 \mathrm{~mm}^{2}$
Therefore Provide $\phi 12 \mathrm{~mm} 2$ no.s
b) $\frac{M_{u}}{b d^{2}}=\frac{96 \times 10^{6}}{230 \times 420^{2}}=2.37 \quad$ From SP 16

Page 48, $\mathrm{P}_{\mathrm{t}}=0.786$
$\mathrm{A}_{\mathrm{st}}=\frac{0.786 \times 230 \times 420}{100}=760 \mathrm{~mm}^{2}$
Provide $\phi 16 \mathrm{~mm}$ of 4 no.s
c) Max S.F
$\tau_{V}=\frac{V_{u}}{b d}=\frac{135 \times 10^{\mathrm{s}}}{230 \times 420}=1.40$
$\tau_{c}=0.59$ (From IS 456 Table 19)
$\frac{V_{u s}}{d}=\frac{(1.4-0.59) 230 \times 420}{42 \times 10^{\mathrm{B}}}=1.88$
Provide $\phi 8$ mm 2 legged stirrups @ $190 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Design of beam b6:

a) Maximum positive B. $M=1.5 \times 66=99$ $\mathrm{kN}-\mathrm{m}$
b) Maximum negative B.M $=1.5 \times 66=99$ $\mathrm{kN}-\mathrm{m}$
c) Maximum S.F $=107 \mathrm{x} 1.5=161 \mathrm{kN}$
a) $\frac{M_{u}}{b d^{2}}=\frac{99 \times 10^{6}}{230 \times 350^{2}}=3.51 \quad$ From SP 16

Page 48, $\mathrm{P}_{\mathrm{t}}=1.185 \& \mathrm{P}_{\mathrm{c}}=0.239$
$\mathrm{A}_{\mathrm{st}}=\frac{1.85 \times 230 \times 350}{100}=953 \mathrm{~mm}^{2} \quad$ Provide
$\phi 16 \mathrm{~mm}$ of 5 no.s
$\mathrm{A}_{\mathrm{sc}} \quad=\frac{0.239 \times 230 \times 350}{100}=193 \quad \mathrm{~mm}^{2}$
Provide $\phi 12 \mathrm{~mm}$ of 2 no.s
b) Max S.F
$\tau_{V}=\frac{V_{u}}{b d}=\frac{161 \times 10^{\mathrm{I}}}{230 \times 350}=2$
$\tau_{c}=0.66$ (From IS 456 Table 19)
$\frac{V_{u s}}{d}=\frac{(2-0.66) 230 \times 350}{35 \times 10^{5}}=3.1 \quad$ Provide
\$8 mm 2 legged stirrups @ 110 mm c/c

2.3 Detailing:

FRAME ALONG $1: 0 \rightarrow$

Fig-5: Detailing of frame along 1

Fig-6: Detailing of frame along 2

Frame Along 3

Fig-6: Detailing of frame along 2

Frame Along 3
Fig-7: Detailing of frame along 2

Frame Along 3

Fig-8: Detailing of frame along 3

Fig-9: Detailing of frame along 8

2.4 Design of columns:

Fig-10:Design ot columns

| Pu/Puz | $=0.533943555$ |
| :--- | :--- | :--- |
| Mux/Mux1 | $=0.107353731$ |
| Muy/Muy1 | $=0.84015963$ |

Refering to chart, permissible value of Mux/Mux1, corresponding to $\mathrm{Pu} / \mathrm{Puz}$ and Muy/Muy1
Mux/Mux1 $=0.6$

No increase in steel percentage
Increase in steel percentage

Increase in steel percentage

Revised \% of steel	$=3$
p/fck	$=0.15$
Pu/(fck*b*d)	$=0.507246377$
Mux1/(fck*b*d²)	$=0.05$
Mux1, kN-m	$=46.575$
Muy1/fck*d*b2	$=0.04$
Muy1, kN-m	$=19.044$
Puz/Ag	$=13$
Puz, kN	$=1345.5$
Pu/Puz	$=0.780379041$
Mux/Mux1	$=0.193236715$
Muy/Muy1	$=1.680319261$

Refering to chart, permissible value of Mux/Mux1, corresponding to $\mathrm{Pu} / \mathrm{Puz}$ and Muy/Muy1

Mux/Mux1 $=0.6$

Table-1: Column details for function hall

_Grid no	$\begin{aligned} & \mathrm{b} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{Pu}, \mathrm{cr} \\ & (\mathrm{KN}) \end{aligned}$	$\begin{aligned} & \mathrm{Mu}, \mathrm{cr} \\ & (\mathrm{KN}-\mathrm{m}) \end{aligned}$	$\mathrm{Pu} /$ fckbd	$\mathrm{Mu} /$ fckbd ${ }^{2}$	$\begin{array}{\|l\|l\|} \hline \mathrm{Pt} \\ \% \end{array}$	$\begin{aligned} & \text { Ast } \\ & \left(\mathrm{mm}^{2}\right) \end{aligned}$	Dia $\&$ number of main reinforcement	Dia \& spacing of lateral ties
C1	300	450	1050	188	0.39	0.18	2.8	3780	8-\#25	\#8 @ 300c/c
C2 circular		300	570	15			0.8	565	6 - \#16	\#8 @ 200c/c
C3	300	450	1782	82.5	0.64	0.12	3.2	4320	$\begin{aligned} & 6-\# 25 \\ & 6-\# 20 \end{aligned}$	$\begin{aligned} & \text { \#8 } \\ & @ 300 \mathrm{c} / \mathrm{c} \end{aligned}$
C4	300	450	891	84	0.33	0.15	2.4	3573	$\begin{aligned} & 6-\# 25 \\ & 2-\# 20 \end{aligned}$	$\begin{aligned} & \hline \text { \#8 } \\ & @ 300 \mathrm{c} / \mathrm{c} \end{aligned}$

2.5 Design of Foundation:

Table-2 Details for foundation

Footing type	Pu,c r kN	Mu,cr $(\mathrm{KN}-$ $\mathrm{m})$	SBC of soil $\left(\mathrm{KN} / \mathrm{m}^{2}\right)$	L (m)	B (m)	D (m)	Reinforcement	
F1	1053	15	200	2.5	2.5	500	\#12@130C/C	\#12@130C/C
F2	697	0	200	1.5	1.5	400	\#10@120C/C	\#10@120C/C
F3	1782	55	200	3.25	3.25	600	\#12@100C/C	\#12@100C/C

3. CONCLUSIONS

$>$ Knowledge about visualization of structure is obtained.
$>$ Design of slabs, beams, columns, footing is done manually.
$>$ All the design requirements were checked for codal provisions.
$>$ An exposure to Staad Pro software are been obtained.
$>$ Knowledge about preparation of structural design report is obtained.
$>$ Practical knowledge regarding execution of various construction stages in the site.

4. REFERENCES

1. IS 456: 2000, "Indian Standard Code for Plain and Reinforced Concrete", Bureau of Indian Standards, New Delhi.
2. IS 1893 (Part1): (2002), "Indian Standard Criteria for Earthquake Resistant Design of Structures", General provision and buildings, Bureau of Indian Standards, New Delhi.
3. SP 16: 1980, "Design Aids for Reinforced Concrete to IS: 456-1978", Bureau of Indian Standards, New Delhi.
4. SP 34: 1987, "Handbook on Concrete Reinforcement and Detailing", Bureau of Indian Standards, New Delhi.
5. IS 875: 1987, "Indian Standard Code of practice for
> IS: 875 - PART 1: Dead Loads
6. IS: 875 - PART 2: Imposed Loads
7. S.Ramamrutam and R.Narayan, (1999), "Design of Reinforced Concrete Structures", Dhanpat Rai Publishing Company, New Delhi.
8. N.Krishna Raju, "Advanced Reinforced concrete design", CBS publishers and distributors, New Delhi.
